A Hybrid of Self Organized Feature Maps and Parallel Genetic Algorithms for Uncertain Knowledge
نویسندگان
چکیده
The need to handle uncertainty and vagueness in real world becomes a necessity for developing good and efficient systems. Fuzzy rules and their usage in fuzzy systems help too much in solving these problems away from the complications of probability mathematical calculations. Fuzzy rules deals will words and labels instead of values of the variables. These labels are called variable's subsets and needed to be prepared carefully to make sure that the fuzzy rules depend on accurate propositions. This research tries to design an efficient set of rules that is used later for inference by a hybrid model of Self Organized Features Maps and Parallel Genetic Algorithms. Self Organized Features Maps capabilities to cluster inputs using self adoption techniques have been very useful in generating fuzzy membership functions for the subsets of the fuzzy variables. Then the Parallel Genetic Algorithms use these
منابع مشابه
A New Approach to Solve N-Queen Problem with Parallel Genetic Algorithm
Over the past few decades great efforts were made to solve uncertain hybrid optimization problems. The n-Queen problem is one of such problems that many solutions have been proposed for. The traditional methods to solve this problem are exponential in terms of runtime and are not acceptable in terms of space and memory complexity. In this study, parallel genetic algorithms are proposed to solve...
متن کاملHybrid algorithms for Job shop Scheduling Problem with Lot streaming and A Parallel Assembly Stage
In this paper, a Job shop scheduling problem with a parallel assembly stage and Lot Streaming (LS) is considered for the first time in both machining and assembly stages. Lot Streaming technique is a process of splitting jobs into smaller sub-jobs such that successive operations can be overlapped. Hence, to solve job shop scheduling problem with a parallel assembly stage and lot streaming, deci...
متن کاملA comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times
In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کامل